SIEMENS

Technical Instructions

Document No. CA1N4497E-P25

Rev. 1, November, 1999

Z200/...

Damping Device for Magnetic Valves

Description

The damping device is used to increase the closing time of magnetic valves. Closing time depends on valve type.

Product Numbers

Table 1.

Product Number		Data Sheet			
	Z200/25	Z200/32	Z200/50	Z200/100	
M2HFYN	-	1/2 – 1"	1-1/4 - 1-1/2	2"	CA1N4348E-P25
M3BGY *	_	1/2 – 1"	1-1/4 – 2"	_	CA1N4459E-P25
M3KFXN *	_	1/2 – 1"	1-1/4 – 2"	_	_
M3PFY *	_	_	_	3 – 4"	CA1N4454E-P25

^{*} when used as a straight-through valve

Ordering

When placing an order, specify quantity, product number and description.

Technical Design

Closing time Application for damping The closing time depends on the valve type and are given in the relevant magnetic valves data sheets.

The damping device is necessary on straight-through valves for water and other liquids if:

A.
$$p_0 + (0.8 \cdot L_1 \cdot \sqrt{\Delta p_v}) \ge p_s$$

$$\text{B.} \quad p_0 - \Delta p_{_{\scriptscriptstyle V}} + 1 - \left(0.8 \cdot L_2 \cdot \sqrt{\Delta p_{_{\scriptscriptstyle V}}}\right) \leq p_{\min}$$

C.
$$\Delta p_v + \left(0.8 \cdot \left[L_1 + L_2\right] \cdot \sqrt{\Delta p_v}\right) \le p_d$$

Technical Design, cont'd.

 p_0 = Working pressure [bar]

 p_s = Admissible pressure [bar]

 p_d = Construction pressure [bar]

 p_{min} = Pressure [bar] corresponding to the pressure/temperature curve for

saturated water vapor and the evaporation curves for other media

 Δp_v = Pressure differential across valve [bar]

L₁, L₂ = Pipe length [m] upstream and downstream of valves depending on whether the valve is installed upstream or downstream of exchanger.

In principle, damping is not necessary for:

- Valves for gaseous media (steam)
- Valves with a three-way function

Pd – Maximum admissible construction pressure [bar]

Valve ranges		Line Size (in Inches)							
	1/2	3/4	1	1-1/4	1-1/2	2	2-1/2	3	4
M3PFY	_	_	_	_	_	_	_	10	10
Others	15.6	14	12.5	12.5	12.5	12.5	_	_	_

- The calculations are approximations and are based on the least favorable layout conditions.
- They apply providing the valve size corresponds with pipe size and the maximum density of the medium does not exceed 0.04 lb/in³.
- If the pipes are one size larger than the valve, L₁ or L₂ should be multiplied by the factor 0.6.

Installation

Installation instructions are enclosed with the Z200/... damping devices.

Application Examples

Figure 1. Valve Upstream of Exchanger.

Application Examples, cont'd.

Figure 2. Valve Downstream of Exchanger.

Dimensions

Figure 3.. Dimensions in Inches.

Damping	Overall Height	Spindle Length	Adjustment Range	Stroke
Type	H ₁	H ₂	Υ	S
	[in]	[in]	[in]	[in]
Z200/100	1.97	1.97	0.48	0.28

Information in this publication is based on current specifications. The company reserves the right to make changes in specifications and models as design improvements are introduced. © 1999 Siemens Building Technologies, Inc.